WEEK 7

Date: $4^{\text {TH }}$ MARCH, 2022 P		Period:	Subject: Mathematics	
Duration:			Strand: Number	
Class: B7		Class Size:	Sub Strand: Number Operations	
Content Standard: B7.I.2.3 Demonstrate understanding and the use of powers of natural numbers in solving problems		Indicator: B7.I.2.3.2 Express a given number as a product of a given number or numbers, as well as, in the form of a power or two such numbers as product of powers		Lesson:
Performance Indicator: Learners can express a given number as a product of a given number or numbers			Core Competencies:	
References: Mathematics Curriculum Pg. 13				
Keywords: prime numbers, prime factors,				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Using blackboard illustrations, review learners understanding in the previous lesson. Share performance indicators and introduce the lesson.			
PHASE 2: NEW LEARNING	Revise with learners to list the factors of numbers on the board. Example: $27=\{1,3,9,29\}$ Ask a learners to describe prime numbers in his/her own words. Guide learners to distinguish between factors and prime factors of natural numbers. Engage learners to express a given number as a product of a given number or numbers. $\text { E.g. i. } 32=2 \times 2 \times 2 \times 2 \times 2 .=2^{5}$ ii. $81=3 \times 3 \times 3 \times 3=3^{4}$ iii. $49=7 \times 7=7^{2}$ iv. $16 \times 27=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3=2^{4} \times 3^{3}$ Assist pupils to write a natural number as powers of a product of its prime factors. E.g. 72 You can find the prime factors by repeatedly diving by prime numbers. $\begin{aligned} 72 & =2 \times 36 \\ & =2 \times 2 \times 18 \\ & =2 \times 2 \times 2 \times 9 \end{aligned}$			Counters, bundle and loose straws base ten cut square, Bundle of sticks

| | $=2 \times 2 \times 2 \times 3 \times 3$
 $=2^{3} \times 3^{2}$ | |
| :--- | :--- | :--- | :--- |
| Assessment
 Express the following as a product of their prime
 factors
 I) 180 2) 72 3)8I 4) 49 5) 16 | | |
| PHASE 3:
 REFLECTION | Use peer discussion and effective questioning to find out
 from learners what they have learnt during the lesson.
 Take feedback from learners and summarize the lesson. | |

Date: $4^{\text {TH }}$ FEB, 2022		Period:	Subject: Mathematics	
Duration:			Strand: Number	
Class: B7	Class Size:		Sub Strand: Number Operations	
Content Standard: B7.I.2.3 Demonstrate understanding and the use of powers of natural numbers in solving problems		Indicator: B7.I.2.3.3 Show that the value of any natural number with zero as its exponent or index is I and use it to solve problems		Lesson:
Performance Indicator: Learners can explain the fact that the value of any natural number with zero as exponent or index is I			Core Competencies:	
References: Mathematics Curriculum Pg. 14				
Keywords: exponent, index				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Using blackboard illustrations, review learners understanding in the previous lesson. Share performance indicators and introduce the lesson.			
PHASE 2: NEW LEARNING	Perform activities with pupils to discover that for any natural number $a, a^{0}=1$ Example: $\text { i.e. (i) } \frac{24}{24} 24 \div 24=122222222$ (ii) $24 \div 24=24-4=20=1$ Guide learners to verify why the value of any natural number with exponent zero is I. Verification:. $\frac{x}{x}=1$, but from indices, $\frac{x}{x}=x^{0}$, hence $x^{0}=1$ for any natural number Thus: if we have $\frac{4}{4}$, the result is I. This can also be done using powers of numbers. That is, $\frac{4}{4}=2^{2} \div 2^{2}=2^{2-2}=20=1$. Therefore, any natural number with an exponent of 0 is I . Also, if we have $\frac{27}{27}$, the result is I. This can also be done using powers of numbers. That is, $\frac{27}{27}=3^{3} \div 3^{3}=3^{3-3}=3^{0}=1$.			Counters, bundle and loose straws base ten cut square, Bundle of sticks

	Therefore, any natural number with an exponent of 0 is I. Let learners practice with more examples to verify that any natural number with zero as exponent or index is 1.	
	Assessment	
Simplify the following		
	I) $2^{3} \times 2^{-4}$	
	2) $2^{2} \times 2^{4} \times 2^{-3}$	
3) $5^{6} \times 5^{-2} \times 5^{-3}$		
	4) $2^{4} \times 2^{-3}$	
	5) $5^{3} \times 5^{-3}$	
PHASE 3:	Use peer discussion and effective questioning to find out	
from learners what they have learnt during the lesson.		
	Take feedback from learners and summarize the lesson.	

